Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Biosensors (Basel) ; 14(4)2024 Apr 20.
Article En | MEDLINE | ID: mdl-38667198

Wearable health devices (WHDs) are rapidly gaining ground in the biomedical field due to their ability to monitor the individual physiological state in everyday life scenarios, while providing a comfortable wear experience. This study introduces a novel wearable biomedical device capable of synchronously acquiring electrocardiographic (ECG), photoplethysmographic (PPG), galvanic skin response (GSR) and motion signals. The device has been specifically designed to be worn on a finger, enabling the acquisition of all biosignals directly on the fingertips, offering the significant advantage of being very comfortable and easy to be employed by the users. The simultaneous acquisition of different biosignals allows the extraction of important physiological indices, such as heart rate (HR) and its variability (HRV), pulse arrival time (PAT), GSR level, blood oxygenation level (SpO2), and respiratory rate, as well as motion detection, enabling the assessment of physiological states, together with the detection of potential physical and mental stress conditions. Preliminary measurements have been conducted on healthy subjects using a measurement protocol consisting of resting states (i.e., SUPINE and SIT) alternated with physiological stress conditions (i.e., STAND and WALK). Statistical analyses have been carried out among the distributions of the physiological indices extracted in time, frequency, and information domains, evaluated under different physiological conditions. The results of our analyses demonstrate the capability of the device to detect changes between rest and stress conditions, thereby encouraging its use for assessing individuals' physiological state. Furthermore, the possibility of performing synchronous acquisitions of PPG and ECG signals has allowed us to compare HRV and pulse rate variability (PRV) indices, so as to corroborate the reliability of PRV analysis under stationary physical conditions. Finally, the study confirms the already known limitations of wearable devices during physical activities, suggesting the use of algorithms for motion artifact correction.


Electrocardiography , Fingers , Galvanic Skin Response , Heart Rate , Photoplethysmography , Wearable Electronic Devices , Humans , Monitoring, Physiologic/instrumentation , Signal Processing, Computer-Assisted , Male , Adult , Female
2.
Biosensors (Basel) ; 13(4)2023 Apr 05.
Article En | MEDLINE | ID: mdl-37185535

The increasing interest in innovative solutions for health and physiological monitoring has recently fostered the development of smaller biomedical devices. These devices are capable of recording an increasingly large number of biosignals simultaneously, while maximizing the user's comfort. In this study, we have designed and realized a novel wearable multisensor ring-shaped probe that enables synchronous, real-time acquisition of photoplethysmographic (PPG) and galvanic skin response (GSR) signals. The device integrates both the PPG and GSR sensors onto a single probe that can be easily placed on the finger, thereby minimizing the device footprint and overall size. The system enables the extraction of various physiological indices, including heart rate (HR) and its variability, oxygen saturation (SpO2), and GSR levels, as well as their dynamic changes over time, to facilitate the detection of different physiological states, e.g., rest and stress. After a preliminary SpO2 calibration procedure, measurements have been carried out in laboratory on healthy subjects to demonstrate the feasibility of using our system to detect rapid changes in HR, skin conductance, and SpO2 across various physiological conditions (i.e., rest, sudden stress-like situation and breath holding). The early findings encourage the use of the device in daily-life conditions for real-time monitoring of different physiological states.


Photoplethysmography , Wearable Electronic Devices , Humans , Photoplethysmography/methods , Monitoring, Physiologic , Heart Rate/physiology , Galvanic Skin Response
3.
Biomed Inform Insights ; 9: 1178222617745557, 2017.
Article En | MEDLINE | ID: mdl-29242701

The use of precordial Doppler monitoring to prevent decompression sickness (DS) is well known by the scientific community as an important instrument for early diagnosis of DS. However, the timely and correct diagnosis of DS without assistance from diving medical specialists is unreliable. Thus, a common protocol for the manual annotation of echo Doppler signals and a tool for their automated recording and annotation are necessary. We have implemented original software for efficient bubble appearance annotation and proposed a unified annotation protocol. The tool auto-sets the response time of human "bubble examiners," performs playback of the Doppler file by rendering it independent of the specific audio player, and enables the annotation of individual bubbles or multiple bubbles known as "showers." The tool provides a report with an optimized data structure and estimates the embolic risk level according to the Extended Spencer Scale. The tool is built in accordance with ISO/IEC 9126 on software quality and has been projected and tested with assistance from the Divers Alert Network (DAN) Europe Foundation, which employs this tool for its diving data acquisition campaigns.

...